

Parallel Programming Enhancements for

Processing Hydrographic Data

Dr. M.J. Miller1
Geary Layne1
Dave Fabre2

Dr. Krzysztof Sarnowski3

1 Naval Research Laboratory,
2 Naval Oceanographic Office

3 USM Hydrographic Science Research Center

Stennis Space Center, MS 39529

March 2003

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 2

1 Introduction

The Naval Research Laboratory’s (NRL) Code 7440 Production Enhancement Team at
the Stennis Space Center has been tasked to develop ways to speedup hydrographic data
processing at the Naval Oceanographic Office (NAVOCEANO) [Depn02]. This paper
presents the final development of a parallelized version of the Pfm_loader application
customized to run on a Beowulf cluster.

This paper specifically covers software development efforts in early FY02 [Sarn02]. In a
series of algorithms, called Schemes D, E, and F, a parallel algorithm previously
implemented in Scheme C (see Figure 1) has been integrated with an improved version
NAVOCEANO’s of the Pure File Magic (PFM) library. Former versions of this software
not mentioned, namely Schemes A and B, were used as a design platform for the
software architecture found in Scheme C. The main goal of this work was to increase the
writing rate of binned data to a physical disk. The final software version is Scheme F.

The final parallel code of Scheme F achieves the best speedup for the largest available
test dataset. The simple runs (no filtering) exhibited a speedup of 10 as compared to the
original, serial algorithm. Runs with swath filtering showed a top speedup of 8. Runs
with area filtering reached a speedup of 6.5. Runs with both swath and area filtering
showed a top speedup of 7. In all cases, data strongly suggest that greater speedups could
be achieved for larger than tested input datasets.

Section 2 of this paper is devoted to Scheme D. Section 3 presents results on an
implemented threaded version of Scheme D. Section 4 deals with results for Scheme E.
Section 5 describes Scheme F. Detailed results are presented on the performance of
Scheme F when swath and area based filtering are enabled. Section 6 presents results
illustrating the effect of the physical disk’s I/O throughput rates on speedup results.
Section 7 discusses results and future plans.

2 Scheme D

In Scheme D, as in Scheme C, nodes are assigned one of the following roles — a master
node, an I/O node, or a slave node. In general, more of the functionality of the original
PFM library has been assigned to the slave nodes in Scheme D than in earlier schemes.

• Each slave node sorts read-in sounding data according to bin index and
compresses them in the same way as is done in the original PFM library. The
sending buffer is now in the form of a character string.

• The I/O node receives sounding data in the PFM compressed form and copies
them into the PFM-style depth blocks consisting of six sounding data and a
continuation pointer.

• The master node role has not been changed from Scheme C.

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 3

2.1 Results
Figure 2 illustrates achieved speedups for different loads. The test datasets are denoted,
as previously, by “L” (the Liberty dataset), “12” (12 files), “24” (24 files), “48” (48 files),
and “74” (74 files). Timings have been averaged over four runs. Speedup figures are
created by comparing parallel and serial runs. In the case of algorithm speedups, the

comparisons are made with corresponding timings for three Message Passing Interface
(MPI) processes. Speedups exhibited by Scheme D reach about 7 for the four larger
dataset loads. For the smallest dataset, Scheme D shows a speedup of around 5, cutting
the run time from around 2 min to 23 sec. For the largest input dataset tested, the
measured speedup is 7 fold, reducing execution time from around 24 min to 3 min 20 sec.
The optimal number of MPI processes is 9 for this scheme.

3 Threading

3.1 Initial Plan
The overall processing flow can be improved by grouping tasks into at least two threads
on the I/O node and a slave node. Tasks related to MPI communication can be
accomplished by a separate thread. A testing program mixing MPI and threading
confirmed that MPI Chamleon (MPICH) allows only a single thread to execute MPI calls.
On the I/O node, a separate communication thread would take care of receiving buffers.

master I/O node

Slave1

R
A
M

Slave3

R
A
M

Slave2

R
A
M

Slave4

R
A
M

Slave5

R
A
M

File_name0
File_name1
File_name2
:
File_nameN

.
Output
PFM
File

Figure 1: Scheme C (the precursor to the schemes presented in this paper)

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 4

The other thread would be responsible for writing data to the PFM output file. On the
slave node, a communication thread would send full buffers to the I/O node. The second
thread would transfer and process sounding data from input files to buffers. Tests are
planned to check if the currently used dual-CPU system boards will efficiently support
two application threads. A quad system board for the I/O node could be used if that
proved beneficial.

3.2 Threading the I/O Node: Algorithm
Only one part of the above plan has been implemented: Scheme D has been tested using
Linux Posix threads on the I/O node only. Processing on the I/O node has been separated
into two threads. The second thread submits data to an output PFM file. The main thread
does all necessary initialization and then creates one additional thread, called the I/O
processing thread. The main thread acts as the I/O communication thread. All MPI
function calls are done only by the I/O communication thread. The I/O communication
thread receives buffers from worker nodes and submits them to a work queue. The I/O

processing thread checks the work queue for any full buffers, and uses PFM function
calls to write data to the PFM output file. An empty buffer is returned to the work queue
area. The algorithm implements reuse of buffers in order to avoid reinitializing buffers.
All access to the work queue is safeguarded by “a mutex lock” (Mutually Exclusive
Access Lock) mechanism, a standard tool available in the thread library. A set of a few

Scheme D Speedup

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI Processes

Sp
ee

du
p

7 files
12
24
48
74

Figure 2: Achieved speedup of Scheme D for different loads.

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 5

empty buffers is initialized in advance on the I/O communication side. If all empty
buffers on the I/O communication node are used, that thread enters the work queue and
gets their empty buffers. If no empty buffers are available in the work queue area, the I/O
communication thread initializes a fresh buffer. Only if initializing the fresh buffer fails,
the I/O communication thread waits for the I/O processing thread to return a buffer. The
creation of additional buffers is always expected because PFM library operations are the
slowest part of processing (since these library operations require multiple accesses to the
physical disk drive).

3.3 Threading the I/O Node: Results
Figure 3 illustrates achieved speedups for different loads. The test datasets are denoted,
as previously, by “L” (the Liberty dataset), “12” (12 files), “24” (24 files), “48” (48 files),
and “74” (74 files). Speedup values for the Scheme D-Threaded version are noticeably
smaller than the original Scheme D. Such results could be attributed to the additional
overhead of the thread library. However, results for the largest test dataset (“74”) are
especially disappointing, due to the lack of control of the memory usage on the I/O node
in the threaded code. This preliminary threaded version has no control on the number of
buffers used to keep incoming buffers on the I/O node. Since worker nodes deliver
buffers much faster than the I/O node could possibly write them to a (slow) physical disk,
incoming buffers forced the operating system on the I/O node to use disk swap space,
causing a significant slow down in processing.

Figure 3: Achieved speedups of Scheme D-Threaded for different loads

 Threaded Scheme D Speedup

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14

MPI processes

Sp
ee

du
p

7 files
12
24
48
74

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 6

4 Scheme E

4.1 Grouping Sounding Data into Packages of 6
The improved version of the PFM library, as well as the original library, writes data to
the physical disk in fixed length blocks. Each block can hold up to six sounding values
(the value of six is configurable). To take advantage of these blocks, sounding data are
sent in groups of six (with the same bin index). At first, slave nodes send depths grouped
into packets of six (with same bin indexes) to create full depth records in PFM style.
When all input file names have been distributed (and most of the files have been already
processed) the finishing slave nodes have some leftover depth data. Separately, each node

cannot create a final full depth record containing 6 sounding values for one bin index.
Under the direction of the master node, the first slave node to finish processing becomes
a sorting and grouping node. Then, the other slave nodes send their leftover data to that
sorting node for consolidation. Subsequently, full records are sent to the sorting and
grouping node (the one which currently is accepting data) with the final leftover data sent
to the I/O node. This additional effort of sorting into groups of six depths has the
advantage of increasing speed of writing the data to disk as well as avoiding any need to
reread and rewrite partially empty depth records. Further improvements include a new
interface function to the PFM library to accommodate direct writing of blocks to the PFM
file. Also, slave nodes are given the additional task of creation of complete depth blocks.

Figure 4: Achieved speedup of Scheme E for different loads

Speedup of Scheme E

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI processes

Sp
ee

du
p

7 files
12
24
48
74

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 7

This improvement reduces the I/O node’s task to simply updating the continuation
pointers before writing data to disk.

4.2 Results
Figure 4 illustrates achieved speedups for different loads, compared with the original
serial application. The test datasets are denoted, as previously, by “L” (the Liberty
dataset), “12” (12 files), “24” (24 files), “48” (48 files), and “74” (74 files). The timings
have been averaged from four runs. A comparison between speedup numbers for
Schemes D and E shows that values for Scheme E are noticeably smaller, except for the
largest test dataset. For the smallest dataset, Scheme E shows a speedup around 4.5,
reducing the run time from around 2 min to 26 sec. For the largest input dataset tested,
the measured speedup is around 7, reducing execution time from around 24 min to 3 min
19 sec. The optimal number of MPI processes is 10 for larger datasets in Scheme E.

4.3 Filtering, Recomputing Steps and Final Tune-up
The original filtering functionality works well in the Beowulf cluster environment. The
original swath filtering was being handled separately for each input file. Thus the new
distributed scheme of processing input files by a group of slave nodes has no effect on
swath filtering. The same has been found for the recomputing step and area based
filtering, which run without any changes to the code because they are executed in the
serial phase, on the I/O node, only after the PFM file has already been created.

Figure 5: Achieved speedups of Scheme F with no Filtering

Speedup without Filtering

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI processes

Sp
ee

du
p

7 files
12
24
48
74

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 8

Figure 7: Scheme F using both filters

Speedup using Both Filters

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI Processes

Sp
ee

du
p

7 files
12
24
48
74

5 Scheme F

A tuned version of the new PFM library was used in Scheme F. Scheme F was tested
with four different setups, involving two possible filtering procedures: swath filtering,

Figure 6: Scheme F with Area Filtering

Speedup w ith Area Filtering

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI Processes

Sp
ee

du
p

7 files
12
24
48
74

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 9

area filtering, both swath and area filtering, and no filtering (called “simple runs”). Each
of these four setups has been tested with the standard five data test loads: “L” (the Liberty
dataset), “12” (12 files), “24” (24 files), “48” (48 files), and “74” (74 files). Results with
no filtering are illustrated in Figure 5.

It was found that Scheme F achieves the best speedup for the largest available test
dataset. The simple runs (no filtering) exhibited a speedup of 10. Runs with swath
filtering enabled showed a top speedup of 8. Runs with area filtering reached a speedup
of 6.5. Runs with both swath and area filtering enabled showed a top speedup of 7. In the
simple runs, swath filtering and area-based filtering are turned off. Figure 6 illustrates
achieved speedups for different loads and filter processing. For the smallest dataset, when
swath filtering is turned on, worker nodes filter the sounding data by swath before
assembling them and sending to the I/O node. Since swath filtering puts additional
processing onto worker nodes, such code behavior is to be expected. Worker nodes
perform swath filtering on sounding data read from the input files. When area filtering is

Speedups using Filtering

0

2

4

6

8

10

12

Number of Files

Sp
ee

du
p

None 4.4 6.7 7.2 8.2 9.6
Swath 3.5 5.5 5.8 7.2 8.3
Area 3.5 4.1 4.6 5.6 6.5
Both 3.3 4.8 5.2 6.4 7.3

7 12 24 48 74

Figure 8: Scheme F performance with combinations of filters.

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 10

also turned on, the I/O node also performs area filtering of sounding data. Since area
filtering is done exclusively by the I/O node after all sounding data has been written to
the PFM file, the area filtering is performed in the serial phase of overall processing.

6 The Role of Hard Drive Performance

This section presents arguments to support the claim that the application Pfm_loader is
I/O bound. When Scheme D was developed, upgrading the BIOS on each Beowulf
cluster node resulted in significant improvement in the throughput of cluster IDE (ATA
100) disks. These changes significantly affected the run time of parallel codes as well as
the original serial code. The changes for the original serial code are in the range from 5%
to 11% (see table 1). The resulting speedup is presented in figure 7. Speedup numbers are
derived by comparing parallel and serial runs. In the case of algorithm speedups, the
comparisons are done with corresponding timings for three MPI processes. The changes
range from 29% to 57%, which at least triples that of corresponding percentage changes
for serial runs.

7 Summary

The optimal number of MPI processes for the simple runs with large datasets is 9.6.
When area filtering is turned on, the I/O node filters sounding data by geographic area.
Since area filtering is done exclusively by the I/O node after all sounding data has been
already written to the PFM file, this processing adds to the length of the serial phase in
the overall processing. The serial processing nature of area filtering causes the greatest
reduction in performance. The results generated by testing two of the four types of
processing provide arguments for increasing the size of the Beowulf cluster. These two
processing types are: (a) processing with swath filtering enabled, and (b) processing with
both swath and area filtering enabled. For the largest test dataset, both processing
methods achieved their best speedups when running with the maximal possible number of
MPI processes. However, the same data indicates the speedup increase would be modest.

In all cases, the data strongly suggests that a speedup greater than 10 could be achieved
for larger datasets. This property is a positive characteristic of the current parallel code. It

 Table 1: Timings of change in hard drive performance

Number of Generic Sensor Format (GSF) input files
7 12 24 48 74

Timings of serial code, before BIOS upgrade
125.106 203.57 439.253 946.034 1607.132

Timings of serial code, with BIOS upgrade
118.439 192.216 412.311 893.726 1433.211

Percentage change
5.33% 5.58% 6.13% 5.53% 10.82%

Miller, et al. (2003). Proceedings of the 2003 IEMS Conference, Cocoa Beach, FL. March 18.

 11

also strongly suggests that the five test datasets have not yet pushed the current code and
cluster configuration to its limits.

8 Acknowledgements

This work was sponsored under Program Element 0603704N by the Oceanographer of
the Navy via SPAWAR PMW 155, Captain Bob Clark, Program Manager. The Naval
Research Laboratory (NRL) wishes to acknowledge contributions the Naval
Oceanographic Office (NAVOCEANO) has made to this research. In particular, NRL
thanks Mr. Jim Braud, Mr. Jan Depner, Mr. Dave Fabre, Mr. Roger Meadows, Mr. Dave
Richardson, Ms. Barbara Reed, and Mr. Steve Nosalik for contributing their ideas, test
data, and original software sources. Additionally, the authors wish to acknowledge
contributions made by the University of Southern Mississippi Hydrographic Science
Research Center located at Stennis Space Center.

9 References

Depner, J. et al, Dealing with Increasing Data Volumes and Decreasing Resources,
Oceans MTS/IEEE, 2002.
Sarnowski, K., Miller, M.J., Layne, G., Project Report FY02, Hydrographic Research
Center, 2002.

